IMPROVING RUNWAY PAVEMENT FRICTION ANALYSIS THROUGH INNOVATIVE MODELING

Cheng Zhang, M.A.Sc Susan L. Tighe, Professor

University of Waterloo

Presenter: Cheng Zhang

Date: Aug. 06, 2014

OUTLINE

- Introduction
- Mechanistic-Empirical Aircraft Deceleration Equation
- Runway Braking Analysis
- Future Work
- Conclusions

INTRODUCTION

 Runway excursions have remained the most common accident/incident in the past few years.

Runway Excursions

INTRODUCTION

Objectives of Research

- Analyze aircraft braking performance on wet and contaminated runways using the mechanisticempirical aircraft deceleration equation;
- Study runway available braking friction under different conditions; and
- Provide recommendations for airports that are subjected to diverse weather conditions.

M-E AIRCRAFT DECELERATION EQUATION

References:

1. Zhang C, Tighe SL, Jeon S, Kwon HJ. A mechanistic-empirical aircraft landing distance prediction method. Transportation research board 93rd annual meeting; Washington D.C. Washington D.C.: Transportation Research Board; 2014.

MECHANISTIC-EMPIRICAL METHOD DECELERATION EQUATIONS

MECHANISTIC-EMPIRICAL METHOD DECELERATION EQUATION

Aerodynamic Drag Force Equations

Engine
Thrust/Reverse
Thrust Equations

Deceleration Equation

Friction Force Equations

Slope Deceleration Equation

DECELERATION EQUATION

DECELERATION EQUATION CALIBRATION

$$a = \underbrace{a_1 \cdot \frac{\rho_{air} V^2}{m}}_{\text{m}} + \underbrace{a_2 \cdot \frac{f(TLA)}{m} \cdot n_E}_{\text{m}} + \underbrace{a_3 \cdot \frac{BP}{m} \cdot n_W}_{\text{m}} + \underbrace{g \cdot \sin \varphi}_{\text{m}} + \underbrace{g \cdot \sin \varphi}_{\text{$$

RUNWAYS BRAKING ANALYSIS BRAKING PRESSURE VS FRICTION

RUNWAYS BRAKING ANALYSIS METHODOLOGY

DATA COLLECTION

DATA COLLECTION

- 56 dry runway landings
- 21 wet runway landings
- 11 contaminated runway landings

Wet Runway

Contaminated Runway

Source: google image

RUNWAYS BRAKING ANALYSIS DRY RUNWAY SAMPLES

Braking Pressure

RUNWAYS BRAKING ANALYSIS DEVIATION DISTRIBUTION

RUNWAYS BRAKING ANALYSIS DRY RUNWAY

RUNWAYS BRAKING ANALYSIS WET RUNWAY SAMPLES

RUNWAYS BRAKING ANALYSIS WET RUNWAY

RUNWAYS BRAKING ANALYSIS CONTAMINATED RUNWAY SAMPLES

95% Bare & Dry, 5% Dry Snow

40% Bare & Dry, 60% Dry Snow Trace

RUNWAYS BRAKING ANALYSIS BRAKING FRICTION COEFFICIENT VS SPEED

CONCLUSIONS

- A new method of analyzing aircraft braking performance
 - » A wet runway can have a similar braking friction coefficient as a dry runway, if well maintained.
 - » Contaminated runways have great impacts on aircraft braking performance
 - » Available braking friction coefficient decreases with the increase of the ground speed

FUTURE WORK

- Full braking
- Severe wet and contaminated conditions
- Runway roughness

FUTURE WORK BRAKING AVAILABILITY TESTER

Prediction of runway braking under different conditions

ACKNOWLEDGMENTS

Centre for Pavement and Transportation Technology (CPATT)

WestJet Airline

Waterloo International Airport

Team Eagle

Ontario Centres of Excellence

THANK YOU

Questions?

Cheng Zhang

M.A.Sc, University of Waterloo
Department of Civil & Environment Engineering

Phone number: +1-(519)-721-5866 E-mail: c274zhan@uwaterloo.ca

